

Flow Forming of Aerostructures

Student: Kyle Nelson, Supervisors: Alastair Conway, Kadir Paslioglu, Industry Sponsor: David Milliken, Mykola Kulakov (Boeing)

What is Flow Forming?

Flow forming, or metal spinning, transforms metal discs or tubes by rotating them and applying pressure, stretching the metal onto a mandrel for precision shapes. This method, rooted in centuries-old practices, stands at the intersection of art and technology, driving sustainable and efficient manufacturing forward.

Advantages of Flow Forming (Metal Spinning)

Material Efficiency - Achieve shapes with less material
 Enhanced Grain Structure - Boosts strength & ductility
 Precision - High accuracy & tight tolerances
 Seamless Products - Perfect for high-integrity needs
 Cost Savings - Reduced tooling costs & waste
 Superior Surface Finish - Minimized extra finishing steps
 Flexibility - Wide variety of shapes & sizes
 Shorter Lead Times - Speedy production & reduced finishing
 Cost-Effective - Ideal for low to medium volumes
 Combination Friendly - Pairs well with other processes

Challenges In Flow Forming

Flow forming is complex by nature.
Even slight changes in one parameter can drastically affect the end result.

Before and After Flow Forming

•Difficult to develop a universal methodology.

- Optimized settings for one material and shape may not work for another, even if the material is the same.
- •Variability often requires a trial-and-error approach.
 - Can lead to material wastage.
 - Increases processing time.

•Numerous parameters influence the final product.

- Tooling geometry
- Part shape
- Feed rate
- Spindle speed

PhD Initiative on Flow Forming: Detailed Overview •Core Objective:

Create a comprehensive analytical model for flow forming mechanics.
 Analytical Model Highlights:

• Captures:

- Velocity Fields: Speed and direction of material flow.
- Strain Rate Fields: Understanding deformation rates.
- Power Metrics & Stress-States: Analyzes energy and internal pressures.
- Identifies defects, pointing out issues like imbalanced forces.
 Al Integration:

Incorporation of a Feed Forward Neural Network.

- Processes data from the analytical model.
- Provides real-time guidance on:
 - Tooling geometry.
 - Feed rate.
 - Spindle speed.

•Benefits of Combined Approach:

- Merges traditional modeling with AI for precise, data-grounded predictions.
- Helps in refining variables for optimal part formation.

•Scalability:

- Model's insights from smaller components aid predictions for larger structures.
- Offers potential for significant cost savings.

coefficients

Weight

values

